New C_{19} -Diterpenoid Alkaloids from the Roots of *Delphinium Giraldii*[†]

ZHOU, Xian-Li^a(周先礼) CHEN, Qiao-Hong^a(陈巧鸿) CHEN, Dong-Lin^b(陈东林) WANG, Feng-Peng*,^b(王锋鹏)

Three new C_{19} -diterpenoid alkaloids, giraldines A (1), B (3) and C (4), were isolated from the roots of *Delphinium giraldii* Diels, together with three known C_{19} -diterpenoid alkaloids, dihydrogadesine (5), tatsiensine (6) and siwanine A (7), as well as their structures were elucidated by chemical evidence and spectral analyses, including IR, MS, 1D NMR and 2D NMR.

Keywords Delphinium giraldii, Ranunculaceae, C_{19} -diterpenoid alkaloid, giraldine A, giraldine B, giraldine C

Introduction

In the course of our studies on the alkaloids of Aconitum and Delphinium, 1-4 we investigated the alkaloids of Delphinium giraldii (Ranunculaceae), 5 a species endemic to Taibai mountain, Shaanxi province in China. No phytochemistry on the plant has been reported so far. The total alkaloids (36 g) were obtained by using an ion-exchange resin method from the dry powdered roots (12.5 kg) and subjected to silica gel column chromatography to give three new C₁₉-diterpenoid alkaloids, giraldines A (1), B (3) and C (4), in addition to the known C₁₉-diterpenoid alkaloids, dihydrogadesine (5), tatsiensine (6) and siwanine A (7). We described here the structure elucidation of these new alkaloids by applying chemical methods and spectral analyses, including 2D NMR (1H-1H COSY, HMQC, HMBC).

Results and discussion

Giraldine A (1) was obtained as white amorphous powder (CHCl₃-MeOH), m.p. 79—80 °C, $[\alpha]_D^{20}$ + 75.3 (c 0.55, CHCl₃). The formula C₂₃H₃₅NO₆ was confirmed by its HRFABMS (m/z 422.2534 $[M^+ + 1]$) and 2D NMR data. The IR and 1 H (13 C) NMR spectra of 1 showed the presence of two methine protons and carbons bearing the hydroxyl groups $[3472, 3430 \text{ cm}^{-1}; \delta_H 3.74]$

(d, J = 4.8 Hz), 4.12 (t, J = 4.4 Hz); δ_C 71.1, 75.5], two quaternary carbons bearing the hydroxyl groups [3472, 3430 cm⁻¹; $\delta_{\rm C}$ 78.1 (s), 86.7 (s)], one N-ethyl group [$\delta_{\rm H}$ 1.06 (t, J = 7.2 Hz, 3H), 2.75— 2.85 (m), 3.02 (s, each 1H); δ_C 13.6 (q), 50.1 (t)], two methoxyl groups [δ_H 3.37, 3.38 (s, each 3H); $\delta_{\rm C}$ 56.2 (q), 57.9 (q)], a C-methyl group $[\delta_{\rm H}]$ 1.12 (s), 3H; δ_C 24.4 (q), 18-CH₃)] and a disubstituted double bond [1639 cm⁻¹; $\delta_{\rm H}$ 5.66 (d, J = 9.6 Hz), 5.82 (dd, J = 9.6, 4.8 Hz), $\delta_{\rm C}$ 137.0 (d), 130.5 (d)]. Its NMR and MS spectra showed that it was the lycoctonine-type C₁₉-diterpenoid alkaloid. ^{7,8} The HMBC spectra of 1 showed the multiple bond correlations among the H-2 (δ 5.82) and C-1, C-4, C-11; the H-3 (δ 5.66) and C-4, C-5, C-18, C-19, indicated the presence of double bond $\Delta^{2(3)}$ with the OH-1. The one signal at δ 4.12 (t, J = 4.4 Hz, 1H, 14β -H) in the ¹H NMR spectrum of 1 showed the presence of 14-hydroxyl group. 7 Two methoxyl groups in 1 should be locate at C-6 and C-16 respectively⁷ by showing the oxygenated methine signals at $\delta_{C}\,91.2$ d, 82.0 d in the ^{13}C NMR of 1, and the multiple bond correlations between the OCH₃-6 (\$ 3.38) and C-6, the OCH₃-16 (δ 3.37) and C-16 (Table 1) in the HMBC of 1.

In the NOE spectrum of the acetate 2 of 1 irradiation of H-1 (δ 5.08), OAc-1 (δ 2.08) and CH₃-22 (δ 1.10) led to the enhancement of the signals of H-12 β [δ (m, 2.08—2.17)], H-12 α [δ (m, 1.50—1.58)] and OAc-1 (negative NOE), respectively, indicating that the OH-1 was α -oriented. In addition, irradiation of H-14 β (δ 4.75) and H-17 (δ 2.85) resulted in an enhancement of H-12 β and H-15 α (δ 1.62), respectively (Fig. 1). The structure of giraldine A was determined as 1. Assignation of ¹H NMR and ¹³C NMR data of 1 and 2 (Table 1) were made by their ¹H-¹H COSY, HMQC, HMBC and NOE spectra. It is worthy to note that H-6 showed a singlet due

^a Department of Bioengineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

^b Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China

^{*} E-mail: wfp@wcums.edu.cn; Tel./Fax: +86-28-85501368

Received February 9, 2003; revised May 7, 2003; accepted June 3, 2003.

Project supported by the Doctoral Foundation of the Ministry of Education, China (2002—2004, No. 20010610047).

†Dedicated to Professor ZHOU Wei-Shan on the occasion of his 80th birthday.

to dihedral angles of 90° between H-5 and H-6 and that a "W"-type coupling between H-5 (d, J=1.6 Hz) and H-17 (d, J=2.0 Hz) was observed in the ¹H NMR of 1. There is a lot of differente by comparison of the ¹³C NMR data of 1 with that of 2, such as C-1, C-2, C-3, C-11, C-17, and C-10, C-13, C-16, possibly attributing the conformational change of the ring A from the boat form in 1 to the chair form in 2, as well as the shift effects of substitution group. ⁹

Fig. 1 NOE correlations of 2.

Giraldine B (3) was obtained in an amorphous powder (CHCl₃-MeOH), m.p. 76—78 °C, $[\alpha]_{0}^{20} + 37.5$ (c 0.45, CHCl₃). Its molecular formula $C_{25}H_{37}NO_{7}$ was derived from HREIMS (m/z 463.2554 $[M^{+}]$) and 2D NMR analyses. The NMR spectral data of 3 revealed signals at $\delta_{\rm H}$ 1.06 (t, J=7.2 Hz, 3H), 2.80—2.89, 2.95—3.05 (m, each 1H), $\delta_{\rm C}$ 13.5 (q), 50.1 (t) for an N-ethyl group; $\delta_{\rm H}$ 3.35, 3.37 (s, each 3H), $\delta_{\rm C}$ 56.2 (q), 57.9 (q) for two methoxyl groups; $\delta_{\rm H}$ 2.07 (s, 3H), $\delta_{\rm C}$ 21.4 (q), 171.4 (s) for the acetyl group.

Its IR and 13 C NMR spectra [3462 cm $^{-1}$; $\delta_{\rm C}$ 86.5 (s), 78.4 (s), 71.0 (d)] showed the presence of two tertiary hydroxyl groups and a secondary hydroxyl group. Comparison of the NMR spectra of 3 with those of 1 showed that 3 had an additional acetyl group. The signal at δ 4.80 (t, J = 5.2 Hz, 1H) in the 1 H NMR spectrum of 3 indicated that the presence of an acetyl group at C-14.7 Finally, the structure of giraldine B was established as 3 by careful analyses of the 1 H NMR, 13 C NMR and 2D NMR (1 H- 1 H COSY, HMQC and HMBC) spectra of 3.

Giraldine C (4), m.p. 58-59 °C, $[\alpha]_D^{20}+36.5$ (c 0.40, CHCl₃), a white amorphous powder (CHCl₃-MeOH), had a molecular formula $C_{30}H_{39}NO_7$ by HREIMS (m/z 525.2721 [M⁺]). Its NMR spectra showed the presence of an N-ethyl group $[\delta_H 1.08$ (t, J=7.2 Hz, 3H); $\delta_C 50.1$ (t), 13.6 (q)], two methoxyl groups $[\delta_H 3.36, 3.38$ (s, each 3H); $\delta_C 56.1$ (q), 57.9 (q)], and a benzoyl group $[\delta_H 7.44-8.15$ (m, 5H); δ_C : see Experimental section]. Comparison of the ¹H NMR spectrum of 4 with those of 3 indicated that the presence of the benzoyl group instead of an acetyl group at C-14 in 4. Thus, the structure of giraldine C was established as 4.

In addition, the identification (MS, ¹H NMR and ¹³C NMR) of the known alkaloids, dihydrogadesine (5), ¹⁰ tatsiensine (6)¹¹ and siwanine A (7), ¹² were carried out. The assignment of the ¹H NMR and ¹³C NMR data (Table 1) of 5 with no ¹³C NMR and partial ¹H NMR data in Ref. 10, were made by its 2D NMR spectra (¹H-¹H COSY, HMQC, HMBC).

To the best of our knowledge, there are only ten double bond $\Delta^{2(3)}$ -containing lycoctonine-type C_{19} -diterpenoid alkaloids, e.g., tatsiensine (6), 11 deacetyltatsiensine, 11 siwanines A-D, 12 takaonine, 13 ibukinamine, 14 2, 3-dehydrodelcosine 15 and caeruline, 16 our research resulted in enhancing additionally number of this group alkaloids.

Experimental

General procedures

Melting point was performed on a Thermal values analysis with microscope and is uncorrected. Optical rotation was measured by a Perkin-Elmer 341 polarimeter, CHCl₃, 1 cm cell. IR spectrum was recorded on a Nicolet FT-IR 200 SXV spectrophotometer with KBr pellets. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Unity INOVA 400/45 or Bruker AC-E 200 NMR spectrometer, TMS as internal standard. EIMS and HREIMS were taken on a VG Auto Spec 3000 or Finnegan MAT 90 instrument. Silica gel GF254 and H (Qindao Sea Chemical Factory, China) were used for TLC, Chromatotron and CC, respectively. Spots on chromatograms were detected under UV light (254 nm) and with modified Dragendorff's reagent. A polyvinyl sulfonic ion exchange resin (H-form, cross linking 1 × 1, Nankai University Chemical Factory, China) was used in the extraction of total alkaloids.

Table 1 NMR data of giraldine A (1), 2, giraldines B (3), C (4), and 5 (400 MHz for ¹H, 100 MHz for ¹³C; CDCl₃)

No.	1		2		3		4°	5
	$\delta_{\rm H}$ (J, Hz)	δ_{C}	$\delta_{\rm H}$ (J, Hz)	δ_{C}	$\delta_{\rm H}\left(J,{\rm Hz}\right)$	δ_{c}	$\delta_{ m C}$	δ_{C}
l	3.74 d (4.8)	71.1 d	5.08 d (2.8)	75.3 d	3.75 d (4.8)	71.0 d	71.1 d	72.7
2	5.82 dd (9.6, 4.8)	130.5 d	5.70 dd (9.6, 2.8)	124.6 d	5.82 dd (9.6, 4.8)	130.6 d	130.7 d	29.2 t
3	5.66 d (9.6)	137.0 d	5.71 d (9.6)	138.8 d	5.66 d (9.6)	136.9 d	137.0 d	32.1
1		34.8 s	_	34.6 s	<u> </u>	34.7 s	34.8 s	33.0
5	1.72 d (1.6)	53.8 d	1.81 d (1.6)	53.8 d	1.70 d (1.6)	53.6 d	53.8 d	50.7
5	3.92 s	91.2 d	3.90 s	90.6 d	3.81 s	91.3 d	91.4 d	90.9
7		86.7 s	_	87.1 s		86.5 s	86.8 s	87.8
3	_	78.1 s		78:0 s	_	78.4 s	78.5 s	77.9
•	2.90-3.02 m	45.4 d	1.88—1.96 m	44.8 d	2.00-2.08 m	44.2 d	43.2 d	45.2
0	2.30-2.40 m	39.7 d	2.32—2.43 m	38.6 d	2.37—2.47 m	38.5 d	38.4 d	39.2
1		48.9 s	_	47.9 s	_	49.2 s	49.4 s	49.0
2α	1.96—2.05 m	27.6 t	1.50-1.58 m	27.8 t	1.95-2.05 m	28.0 t	27.9 r	29.1
2β	2.00-2.10 m		2.08—2.17 m		2.19—2.28 m			
3	1.90—2.03 m	44.5 d	3.22-3.33 m	42.5 d	3.10-3.22 m	42.6 d	43.2 d	44.0
4	4.12 t (4.4)	75.5 d	4.75 t (4.8)	75.8 d	4.80 t (5.2)	76.3 d	76.4 d	75.6
5α	1.62 dd (12.0, 6.4)	34.4 t	1.58—1.68 m	33.6 t	1.55—1.66 m	33.9 t	34.3 t	34.3
5β	2.74—2.84 m		2.67—2.77 m		2.66—2.76 m			
.6	3.30—3.42 m	82.0 d	3.20 t (8.0)	83.2 d	3.28—3.38 m	82.6 d	82.5 d	81.9
17	2.85 d (2.0)	65.0 d	2.85 d (2.8)	62.5 d	2.79 d (2.0)	64.7 d	64.8 d	65.6
.8	1.12 s	24.4 q	1.08 s	23.9 q	1.11 s	24.4 q	24.4 q	27.6
19	2.40 ABq (12.0)	56.0 t	2.36 ABq (hidden)	56.1 t	2.40 ABq (hidden)	56.0 t	56.0 t	60.7
	2.44 ABq (12.0)		2.58 ABq (11.6)		2.46 ABq (hidden)			
21	2.75—2.85 m	50.1 t	2.61-2.72 m	49.5 t	2.80-2.89 m	50.1 t	50.1 t	50.1 1
	3.02 s		3.05—3.15 m		2.95—3.05 m			
2	1.06 t (7.2)	13.6 q	1.10 t (7.2)	13.9 q	1.06 t (7.2)	13.5 q	13.6 q	13.6
,	3.38 s	57.9 q	3.38 s	57.9 q	3.37 s	57.9 q	57.9 q	57.9
6′	3.37 s	56.2 q	3.34 s	56.9 q	3.35 s	56.2 q	56.1 q	56.2
			2.08 s	170.6 s	2.07 s	171.4 s	· · · · · · · · · · · · · · · · · · ·	
			(OAc-1)	21.6 q	(OAc-14)	21.4 q		
			2.07 s	171.3 s	3.89 s	_ `		
			(OAc-14)	21.3 q	(OH-1)			

^{9.8} s (C-1"), 129.8 d (C-2",6"), 128.3 d (C-3",5"), 132.6 d (C-4").

Plant material

Plants were collected in Taibai mountain of Shaanxi province, China, and authenticated by Professor W. T. Wang, Institute of Botany, Chinese Academy of Sciences, where a voucher specimen (No. 98091501) has been deposited.

Extraction and isolation

According to the reported method, 8 12.5 kg of dry powdered roots of Delphinium giraldii Diels were percolated with HCl (0.05 mol/L, 250 L). After ion-exchanging (resin: dry weight 1.8 kg) and basifying with NH₄OH (5.6 L), successive extractions with ether (9000 mL) and CHCl₃ (4000 mL) under reflux until no alkaloid by detection of Dragendorff's reagent gave the crude alkaloids I (36 g) and II (3.5 g), respectively. The crude alkaloid I (23 g) was chromatographed successively on silica gel column eluting with CHCl₃-MeOH (99:1-3:1, V:V) according to combination of the similar fractions by TLC detection to give seven parts, A (4.77 g), B (1.28 g), C (3.31 g), D (3.09 g), E (3.10 g), F (1.21 g) and G (2.56 g). Part A was separated on a silica gel H column eluting with cyclohexane-ethyl acetate-acetone-diethylamine (100:8:4: 1-50:10:10:1, V:V:V:V) to afford giraldine A (1) (500 mg) and other fractions A-1 (67 mg), A-2 (270 mg) and A-3 (230 mg). Further centrifugal thin layer chromatograph of fraction A-1 eluting with petroleum etherethyl acetate-acetone (40:20:1, V:V:V) produced giraldine C (4, 8 mg). Fraction A-2 was chromatographed over silica gel H column (petroleum ether-acetone-ammonia solution 100:1:1, V:V:V) to afford tatsiensine (6, 34 mg) and giraldine B (3) (51 mg). Fraction A-3 was chromatographed on a Chromatotron eluting with petroleum ether-ethyl acetate-acetone (15:5:1, V:V:V:V) to afford siwanine A (7) (37 mg). Part C was chromatographedover silica gel H column (cyclohexane-acetone 3:1-1:1, V:V) to afford dihydrogadesine (5) (30 mg).

Giraldine A (1) White amorphous powder, m.p. 79—80 °C, $[\alpha]_D^{20}$ + 75.3 (c 0.55, CHCl₃); ¹H NMR and ¹³C NMR data see Table 1; IR (KBr) ν : 3472, 3430, 2934, 2902, 2821, 1639, 1457, 1393, 1219, 1090, 1049, 999, 949, 736, 672, 611 cm⁻¹; FABMS m/z (%): 422 (M⁺ + 1, 100), 406 (14), 391 (65). HRFABMS calcd for C₂₃ H₃₅ NO₆ [M⁺ + 1] 422.2542, found 422.2534.

Acetylation of 1 A solution of 1 (150 mg) was dissolved in 5 mL of pyridine, then treated with 2 mL of Ac_2O for 72 h at room temperature. Usual work-up of the reaction mixture gave an acetate 2 (88 mg). 2: white amorphous powder, m.p. 178—180 °C, ¹H NMR and ¹³C NMR data see Table 1; FABMS m/z (%): 506 (M⁺ + 1, 100), 490 (54), 446 (30), 122 (10). HRFABMS calcd for $C_{27}H_{39}NO_8$ [M⁺ + 1] 506.2753, found 506.2738, NOE see Fig. 1.

Giraldine B (3) White amorphous powder, m.p. 76—78 °C, $[\alpha]_D^{20}$ + 37.5 (c 0.45, CHCl₃); ¹H NMR and ¹³C NMR data see Table 1; IR (KBr) ν : 3462, 2928, 1736, 1457, 1382, 1248, 1091, 1055, 999, 951, 737, 664, 599 cm⁻¹; EIMS m/z (%): 463 (M⁺, 6), 448 (100). HREIMS calcd for C₂₅ H₃₇ NO₇ 463.2570, found 463.2554.

Giraldine C (4) White amorphous powder, m.p. 58—59 °C, [α] $_D^{20}$ + 36.5 (c 0.40, CHCl $_3$); 1 H NMR (CDCl $_3$, 200 MHz) δ : 1.08 (t, J = 7.2 Hz, 3H, N-CH $_2$ CH $_3$), 1.12 (s, 3H, 18-CH $_3$), 3.36, 3.38 (s, each 3H, 2 × OCH $_3$), 5.09 (t, J = 4.6 Hz, 1H, H-14 β), 5.70 (d, J = 9.4 Hz, 1H, H-3), 5.80 (dd, J = 9.4, 4.6 Hz, 1H, H-2), 7.44—8.15 (m, 5H, ArH); IR (KBr) ν : 3458, 3433, 2927, 1717, 1642, 1454, 1379, 1279, 1220, 1182, 1124, 1091, 1030, 950, 715 cm $^{-1}$;

EIMS m/z (%): 525 (M⁺, 5), 510 (88), 494 (7), 105 (100), 77 (24), 58 (52). HREIMS calcd for $C_{30}H_{39}$ -NO₇ 525.2726, found 525.2721.

Dihydrogadensine (5) 1 H NMR (CDCl₃, 400 MHz) δ: 3.58—3.72 (m, 1H, H-1), 1.83—1.97 (m, 1H, H-2α), 2.00—2.10 (m, 1H, H-2β), 1.52—1.64 (m, 1H, H-3), 1.54 (d, J = 1.6 Hz, H-5), 3.95 (s, 1H, H-6), 2.88—3.00 (m, 1H, H-9), 2.31—2.41 (m, 1H, H-10), 1.54—1.68 (m, 1H, H-12α), 1.60—1.69 (m, 1H, H-12β), 1.75—1.84 (m, 1H, H-13), 4.10 (t, J = 4.8 Hz, 1H, H-14β), 1.65—1.75 (m, 1H, H-15β), 2.70—2.80 (m, 1H, H-15α), 3.30—3.42 (m, 1H, H-16), 2.86 (d, J = 2.0 Hz, H-17), 1.11 (s, 3H, H₃-18), 2.47, 2.51 (ABq, J = 12.0 Hz, each 1H, H₂-19), 2.76—2.87, 2.93—3.02 (m, each 1H, H₂-21), 1.10 (t, J = 7.2 Hz, H₃-22), 3.37 (s, 3H, H₃-6′), 3.36 (s, 3H, H₃-16′).

References

- Wang, F.-P.; Peng, C.-S.; Yu, K.-B. Tetrahedron 2000, 56, 7443.
- Wang, F.-P.; Peng, C.-S.; Jian, X.-X.; Chen, D.-L. JANPR 2001, 3, 15.
- 3 Shen, X.-L.; Zhou, X.-L.; Chen, Q.-H.; Chen, D.-L.; Wang, F.-P. Chem. Pharm. Bull 2002, 50, 1265.
- 4 Peng, C.-S.; Chen, Q.-H.; Chen, D.-L.; Jian, X.-X.; Wang, F.-P. *Heterocycles* **2002**, *57*, 1117.
- 5 Institute of Botany, Chinese Academy of Sciences and Institute of Materia Medica, Chinese Academy of Medical Sciences, Flora-Republicae Popularis Sinicae Vol. 27, Science Press, Beijing, 1979, p. 1781, (in Chinese).
- 6 Fang, Q.-C.; Huo, Z.-M. Acta Pharm. Sinica 1966, 13, 577 (in Chinese).
- 7 Pelletier, S. W., Joshi, B. S. Alkaloids: Chemical and Biological Perspectives, Vol. 2, Eds.: Pelletier, S. W; Wiley, New York, 1984, p. 205.
- 8 Chen, D.-L.; Jian, X.-X.; Wang, F.-P. Natural Products R&D 2002, 14(4), 54 (in Chinese).
- 9 Wang, F.-P. Chin. J. Org. Chem. 1985, 3, 161 (in Chinese).
- 10 Gonzalea, A. G.; Fuent, G. dela. Diaz, R. Phytochemistry 1982, 21, 1781.
- 11 Pelletier, S. W., Glinski, J. A.; Joshi, B. S.; Chen, S.-Y. Heterocycles 1983, 20, 1347.
- 12 Zhang, S.-M.; Qu, Q.-Y. Phytochemistry 1998, 48, 191.
- 13 Sakai, S; Takayama, H.; Okamoto, T. Yakugaku Zasshi 1979, 99, 647.
- 14 Sakai, S; Yamamoto, I; Hotoda, K; Yamaguchi, K; Aimi, N; Yamanaka, E; Haginiwa, J; Okamoto, T. Yakugaku Zasshi 1984, 104, 222.
- Takayama, H; Okazaki, T; Yamaguchi, K; Aimi, N; Haginiwa, J; Sakai, S. Chem. Pharm. Bull. 1988, 36, 3210.
- 16 Pan, Y.-J; Wang, R; Chen, S.-N. Chen, Y.-Z. Chem. J. Chin. Univ. 1992, 13(11), 1418 (in Chinese).